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Chapter 1

Introduction

1.1 Semantic Roles and Frame Semantics

Semantic roles1 represent the underlying relationship between the main

verb in a clause and its participants. The concept was first introduced by

Charles Fillmore in his paper “The Case For Case”[6], in which he argued

that the notion of semantic “cases” (or roles) was central to all languages.

Whereas the surface representation of a clause defines a syntactic role for a

given word that is perhaps specific to that language – such as “Subject” or

“Object” – the deeper meaning of the clause defines a semantic role which is

universal – such as “Agent” or “Goal.” The word which fills a given semantic

role of a verb might appear in more than one syntactic role depending on the

structure of the clause. For example, let’s look at the following sentences:

(1) John ate the apple at the park.

(2) The apple was eaten at the park by John.

In (1) the syntactic role of “Subject” is filled by the noun phrase “John” and

the syntactic role of “Object” is filled by the noun phrase “the apple.” How-

1Also known as “thematic roles” or “cases”.
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ever, in (2) the “Subject” role is filled by “the apple” and there is no “Object”

role. Both sentences, however, describe the same event. The difference is that

(1) is expressed in the active voice and (2) is expressed in the passive voice.

Because they both describe the same event, the person who is doing the eating

(the “Agent”) and the thing being eaten (the “Theme”) don’t change. In both

examples, “John” fills the semantic role of “Agent” and “the apple” fills the

semantic role of “Theme.”

The concept of semantic roles is closely linked with the concept of frame

semantics, which was introduced by Charles Fillmore as a further development

of his ideas on case grammar. [7] The underlying principle of frame semantics

is that one cannot understand the meaning of a word without having access

to all the essential knowledge that relates to that word. For example, one can-

not understand the meaning of “sell” without understanding how commercial

transactions work, what money is, what a buyer and seller are, and so on.

Thus, the word “sell” evokes a “semantic frame” of meaning relating to the

specific concept to which it refers (the selling of goods).

1.2 Automatic Semantic Role Labeling

Automatic semantic role labeling is the task of determining which con-

stituents in a sentence are semantic arguments for a given predicate and then

determining the appropriate role for each of those arguments. [8] Labeling the

constituents in a sentence with their semantic roles provides important data

for systems which require an understanding of the semantic meaning of a given
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text. Current common uses of this information include automated question

answering and information extraction.

As an example, let’s look at a hypothetical search engine. For this

example, let’s assume that the search engine has indexed documents containing

the following sentences (among others):

(3) UT Austin is located 20 miles from downtown Round Rock.

(4) You can ride the bus to UT Austin.

(5) I often drive to UT Austin from Round Rock to watch the Longhorns

play football.

Now let’s say that a user submits the following query to our search

engine:

(6) How can I get to UT Austin from Round Rock?

A näıve search engine will gather a list of documents which contain

those words and rank them so that documents with more matching words

are returned first. This sort of search engine would likely return document

(5) as the best match, followed by document (3) and then document (4).

However, document (5) and document (3) don’t answer the user’s question2.

A more intuitive search engine could look at the semantic representation of the

2Although document (5) does indirectly mention a possible means of getting to the
destination.
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question to find out what the user is actually looking for before determining

the ranking of its results. This can be accomplished by assigning semantic

roles to both the search query and the documents that have been indexed.

A search engine that assigns semantic roles to its indexed documents

might assign roles like these3:

(7)


Frame ‘Being located’

Predicate ‘located’

Roles

Theme ‘UT Austin’

Location ‘20 miles from downtown Round Rock’





(8) a.


Frame ‘Capability’

Predicate ‘can’

Roles

Entity ‘You’

Event ‘ride the bus to UT Austin’




b.



Frame ‘Motion directional’

Predicate ‘ride’

Roles


Theme ‘You’

Carrier ‘the bus’

Goal ‘to UT Austin’





3These roles are taken from the FrameNet corpus.
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(9)



Frame ‘Motion directional’

Predicate ‘drive’

Roles



Theme ‘I’

Goal ‘to UT Austin’

Source ‘from Round Rock’

Purpose ‘to watch the Longhorns play football’




It could then assign roles such as these to the question:

(10) a.


Frame ‘Capability’

Predicate ‘can’

Roles

Entity ‘I’

Event ‘get to UT Austin from Round Rock’




b.



Frame ‘Motion directional’

Predicate ‘get’

Roles


Entity ‘I’

Goal ‘to UT Austin’

Source ‘from Round Rock’




From this, the search engine can determine that what the user really

wants to know are the modes of transportation that are available. It could then

look for sentences which contain the “Capability” frame with an “Event” role

which contains the “Motion directional” frame with a “Goal” role containing

“UT Austin”. This would rank document (4) first, followed by document (5)

and then document (3). Alternatively, the search engine could assume that the

5



user was trying to find the various means of transportation “to UT Austin”

and could generate the list of constituents which are assigned to the “Carrier”

role in “Motion directional” frames that also contain a “Goal” role of “to UT

Austin”. It could then display those constituents to the user along with the

search results.

1.3 Headwords

In order to decide which roles to assign to which words, many sys-

tems currently use the idea of headwords. A headword is the direct child

of a complex constituent that has the same syntactic category as the parent

constituent. For example, let’s take a look at the following sentences:

(11) John eats apples.

S

VP1

NP2

apples

VP2

eats

NP1

John

Figure 1.1: Syntax Tree of (11)

(12) John sometimes eats red apples.
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S

VP1

NP2

NP3

apples

Adj

red

VP2

eats

Adv

sometimes

NP1

John

Figure 1.2: Syntax Tree of (12)

In (11) there are three simple constituents (NP1, VP2, and NP2) and

one complex constituent (VP1). In this simple case, the headwords for each

of the three simple constituents are “John”, “eats”, and “apples” respectively.

The headword for the complex constituent VP1 is taken from the direct de-

scendant of VP1 that is also a VP, namely VP2. This means that the headword

for VP1 is “eats”. If we embellish this sentence a little bit we get something

like (12). Now NP2 is a complex constituent instead of a simple constituent.

However, since NP2 gets its headword from the direct descendant with the

same category, namely NP3, the headword for NP2 is still “apples”. This sim-

ple concept allows current systems to decide semantic roles based on what

roles they have previously seen assigned to a given constituent, without get-

ting confused by slight changes in the composition of the constituent. To see

this in action, let’s assume our system sees the following sentence [10]:

(13) I want to eat someplace that’s close to campus.

7



There are two possible interpretations of this sentence. The first in-

terpretation is that “someplace that’s close to campus” is the location where

the eating will take place, and therefore fills the “Place” role. The second

interpretation is that “someplace that’s close to campus” is the thing that will

be eaten, and therefore fills the “Theme” role. Native speakers immediately

realize that the first interpretation is the correct one, but a computer has a

much harder time determining that.

For example, let’s assume that we have a machine learning system that

uses the headword of the constituent following the verb to determine what

semantic role to assign to that constituent. First we train the system on the

following data:

Verb Constituent Role
eat apple Theme
eat toast Theme
eat lunch Theme

Now let’s assume that we ask this system to label the semantic role of

the phrase “someplace that’s close to campus” from(13). The system hasn’t

seen the headword “someplace” before, but so far all of the constituents fol-

lowing the verb “eat” have had the “Theme” role, so that is what it will

assign to the previously unseen constituent. This would give us the second

interpretation for (13), which we know is incorrect.

So how do we fix this? Well, one way is by just giving the system

more training data. If the system had already seen a sentence like “I want to

eat someplace else”, where “someplace” was assigned the “Place” role, then

8



it would know that when the constituent following “eat” has “someplace” as

its headword, then it should assign the “Place” role. This would give us the

correct interpretation of (13), but the next time the system saw an unknown

noun as a headword it would once again fall back to the “Theme” role. This

will almost certainly happen frequently because it is unlikely that all possible

headwords will be present in the training data, regardless of its size. The real

problem is that seen headwords will be quite sparse in any annotated training

corpus compared to the non-annotated text that the system will be asked to

work with. This problem is compounded by the fact that manual annotation

of a corpus is an expensive and time consuming venture.

1.4 Selectional Preferences

What if instead of just giving the system more training data we made

the system smarter by giving it more information about how words are related?

This would allow the system to do more with headwords that it hasn’t seen in

its training data. For instance, a useful clue in determining which interpreta-

tion of (13) is correct is the fact that the “Theme” role of the predicate “eat”

is usually filled by something edible. If the system was given information on

how words are related, it might discover that “someplace” doesn’t fall into the

category of edible things and therefore it would be highly unlikely for it to fill

the “Theme” role. This is an example of selectional preferences.
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Selectional preferences4 are constraints that a predicate places on what

sorts of words can fill in for its various semantic arguments. [20] There’s nothing

syntacticly wrong with the second interpretation of (13), but it doesn’t make

sense semantically because of the selection preferences of “eat”5.

Due to the sparseness of seen headwords, it would be reasonable to

expect that selectional preferences would be a standard feature of modern

semantic role labeling systems. However, although some people have done

work on selectional preferences, they are still a relatively rarely used feature.

This is due mainly to the fact that previous research has included many other

features in the labeling process.

The aim of this paper is to explore the effect that selectional prefer-

ences have on the accuracy of semantic role labeling systems in a controlled

environment where other unseen factors will not affect the outcome. This will

provide evidence either for or against the inclusion of selectional preferences

as a standard feature of semantic role labeling systems in the future.

4Selectional preferences are sometimes also called selectional restrictions.
5Unless, of course, the Agent of “to eat” is Godzilla!
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Chapter 2

Related Work

This chapter discusses previous research related to semantic role label-

ing and selectional preferences.

2.1 Semantic Role Labeling

Even though there has been a lot of fundamental research on the task

of semantic role labeling, starting with Gildea and Jurafsky [8] and including

shared tasks at CoNLL [3, 4] and SENSEVAL 3 [13], previous approaches

have either focused largely on headwords or have used selectional preferences

as only one of many features.

2.2 Selectional Preferences

Resnik [20] was the first to define a formal computational model for

selectional preferences. His goal was to model the selectional preferences of

predicates for given arguments with as simple a model as possible. His model

uses an information theoretic approach and the idea of word classes – groups

of related words – to generalize the results beyond the specific verb/noun pairs

that are seen during training.
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The model generates two values. The first is the selectional preference

strength of a given predicate. This number represents how strongly a predicate

requires certain word classes as arguments, but doesn’t specify what those word

classes are. The second is the selectional association between a predicate and

a given word class.

The selectional preference strength S(p) of a predicate p is computed

by first computing two probability distributions and then finding the difference

between them1:

S(p) = D (P (C|p)||P (C)) =
∑
c∈C

P (c|p)log
P (c|p)

P (c)

where P (C) is the overall distribution of the set of all noun classes C and

P (C|p) is the probability distribution of the set of all noun classes C paired

with the given predicate p.

The selectional association A(p, c) between a predicate p and a word

class c is calculated by finding the total amount that c contributes to S(p):

A(p, c) =
P (c|p)log P (c|p)

P (c)

S(p)

The association strength A(p, n) between a predicate p and a noun n

is then calculated as the largest association strength of all of the word classes

1This is called the Kullback-Leibler (or KL) divergence, which measures the difference
between the entropy – or uncertainly – of two probability distributions.
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the noun belongs to:

A(p, n) = max
c∈classes(n)

A(p, c)

In Resnik’s model the WordNet hierarchy is used to generate the list of

classes by assigning a given word to classes for each of its possible meanings

and to classes for each of the hypernyms of those meanings. During training,

each verb/noun pair adds a partial count to each of the word classes that

the noun belongs to. The partial count is inversely proportional to the total

number of word classes for that noun:

count(v, n) =
1

|classes(n)|
freq(v, n)

where v is a verb, n is a noun, |classes(n)| is the number of word classes to

which n belongs, and freq(v, n) is the number of times n was paired with v

during training.

These counts are then used to estimate the joint probability P (v, c):

P (v, c) =
1

N

∑
n∈words(c)

count(v, n)

where c is a word class, words(c) is the set of all nouns in c, and N is the total

number of verb/noun pairs seen during training for verb v. The joint probabil-

ity P (v, c) can then be used to estimate P (c|v) so that selectional preference

strengths and selectional associations can be calculated for verb/noun pairs.

13



2.2.1 Example

Let’s assume that we have the following words and word classes:

Word Word Classes
soup food, inanimate object
dog pet, animal, animate object

rabbit pet, animal, food, animate object
John person, animate object
lunch food, event, inanimate object

cafeteria place, inanimate object

Now let’s say that during training the model sees the following verb/noun

pairs: “eats/soup”, “walks/dog”, and “eats/rabbit”. The model will count

these verb/noun pairs as follows:

• When the model sees the first pair - “eats/soup” - it will add 0.50 to

“eats/food” and 0.50 to “eats/inanimate object”.

• When it sees the second pair - “walks/dog” - it will add 0.33 to “walks/pet”,

0.33 to “walks/animal”, and 0.33 to “walks/animate object”.

• When it sees the last pair - “eats/rabbit” - it will add 0.25 to “eats/pet”,

0.25 to “eats/animal”, 0.25 to “eats/food”, and 0.25 to “eats/animate

object”.

14



After training, the model will contain the following counts:

Class eats walks
food 0.75 0.00

inanimate object 0.50 0.00
animate object 0.25 0.33

pet 0.25 0.33
animal 0.25 0.33
person 0.00 0.00

event 0.00 0.00
place 0.00 0.00

These counts are then used to estimate the joint probability distribution

P (v, c) using the method detailed above. If we assume an equal distribution

of word classes, then we get the following probability distributions:

Class P (c) P (c|eats) P (c|walks)
food 0.125 0.375 0.000

inanimate object 0.125 0.250 0.000
animate object 0.125 0.125 0.333

pet 0.125 0.125 0.333
animal 0.125 0.125 0.333
person 0.125 0.000 0.000

event 0.125 0.000 0.000

Using these probability distributions, the model calculates the following selec-

tional preference strengths S(v) and selectional associations A(v, c):

eats walks
S(v) 0.585 0.981

A(v, food) 0.704 0.000
A(v, inanimateobject) 0.296 0.000

A(v, animateobject) 0.000 0.333
A(v, pet) 0.000 0.333

A(v, animal) 0.000 0.333
A(v, person) 0.000 0.000
A(v, event) 0.000 0.000

15



Now let’s assume that we’re using this model to label the words in

the sentence “John eats lunch with his dog.”2 Assuming that we know the

part of speech of each word in the sentence, we could ask the model to give

us the association strength A(v, n) of each of the following verb/noun pairs:

“eats/John”, “eats/lunch”, and “eats/dog”.

These are the strengths that would be returned by the model:

Pair Strength Class
eats/John 0.000 person or animate object
eats/lunch 0.704 food

eats/dog 0.000 pet, animal, or animate object

This means that out of the three possible choices,“lunch” is most likely

to be the argument of “eats” based on the verb’s selectional preferences. We

can also determine that this version of “lunch” refers to a type of food and

not to an event or an inanimate object.

2.2.2 Other Approaches

An alternative approach is to define association strength directly as

P (n|v) without relying on the concept of word classes or a predefined word

hierarchy. There are a number of ways to do this, such as clustering or com-

puting the similarity of nouns. [12]

In Rooth et al. [22] EM clustering is used to create clusters based on

the syntactic role a given noun fills in the training data. Although the model

2This also assumes that we’re not using the syntactic structure of the sentence as part
of our analysis.
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uses the idea of word classes (ie. clusters), the classes are discovered during

training instead of being prescribed before hand. The model produces a joint

probability distribution p(v, n) for all verb/noun combinations that is used

directly as the association strength.

In Erk [5] a vector space model is used to compute the similarity of a

given word to the words that fill a given role in the training data. This pro-

duces a similarity value – sim(w0 , w) – that is used to compute an association

strength directly. Erk’s model is described in more detail in the next section.

2.3 Word Similarity and Vector Spaces

Erk [5] describes a simple similarity based model for computing selec-

tional preferences. Her model makes use of two corpora, a primary corpus

and a generalization corpus. The primary corpus is used to extract tuples of a

predicate, an argument position, and a headword. The generalization corpus

is then used to compute a vector space with vectors representing the meaning

of each of the seen headwords based on the environments in which they are

found in the generalization corpus. Once trained, the model computes the

selectional preference S of an argument rp of a predicate p as a weighted sum

of similarities:

Srp(wo) =
∑

w∈Seen(rp)

sim(w0 , w) · wtrp(w)

where Seen(rp) is the set of seen headwords for the argument rp of predicate

p and wtrp(w) is the weight given to word w for rp of p.

17



To do this it first computes a vector for the new headword using the

generalization corpus. Next it computes the similarity3 between this new vec-

tor and the vectors for each of the headwords seen in the same argument

position for the same predicate in the training corpus. Finally it computes the

weighted sum4 of those similarities, which is the value returned by the model.

3This can be computed using several different methods, such as the cosine of the angle
between the two vectors.

4Erk’s paper uses several different weighting methods, but finds that the weighting
method has little effect on the accuracy of the model.
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Chapter 3

Method

Current research in semantic role labeling has focused on using machine

learning systems to label semantic roles based on a large number of features,

only one of which is selectional preferences. Because of this, the existing re-

search hasn’t determined to what degree selectional preferences help or hinder

the ability of these systems to make good labeling choices. In order to de-

termine if selectional preferences improve the performance of a semantic role

labeling system, it is necessary to to test their effectiveness in a “pure” setting

without many additional features. If it is found that they do improve the per-

formance of semantic role labeling systems, then further research can be done

to determine the best way to integrate them into a larger system.

For my experiment, I started by training a machine learning system

to label constituents with their semantic roles using a very small benchmark

feature set which included only the headword lemma, the predicate, the syn-

tactic role, the part of speech, and the semantic role label. This gave me a

benchmark (or control) value. Then I created another dataset which included

information about the selectional preferences of the predicate and compared

the performance of this system with the performance of the benchmark system.
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3.1 Semantic Role Labeling

Semantic role labeling is usually divided into two steps:

1. Decide which constituents should be considered arguments of a given

predicate.

2. Decide which roles should be assigned to those arguments.

My experiment focused on the second step because it has been argued

that semantic features are more important for the second step than the first

step. [18]

3.1.1 Data

There were two corpora available that contained annotations on seman-

tic roles: PropBank [16] and FrameNet [1]. PropBank is a corpus annotated

with verbal propositions and their arguments. FrameNet uses the concept of

semantic frames where a semantic frame is used to describe an object, state or

event. After reviewing both of these corpora, I decided to use the FrameNet

corpus for my experiment because FrameNet provides named roles such as

“Agent”, “Degree”, and “Means” whereas PropBank uses enumerated argu-

ments such as “Arg0”, “Arg1”, and “Arg2”. FrameNet’s named roles more

clearly demonstrate the relationship between words that fill the same role for

different predicates. The FrameNet corpus provided me with 133,530 anno-

tated sentences to work with, containing more than 2,970,000 words in total.

20



3.1.2 Parameters

In order to make the experiment as clean as possible, I needed to be

sure that the only variable that changed between the benchmark dataset and

the expanded dataset was the addition of selectional preference data. To

accomplish this the number of additional features required by the semantic role

labeling system was reduced to four: the lemma of the predicate, the lemma

of the argument, the argument’s part of speech, and the argument’s syntactic

role. The labeling task was also defined to limit ambiguity by limiting the

training and testing data so as to exclude complicated grammatical structures

that might cause ambiguities in a predicate’s argument structure. Only direct

dependants1 of the predicate were used as semantic role candidates.

3.2 Selectional Preferences Model

To determine the selectional preferences of a given predicate, I used a

vector space model similar to the one proposed by Erk [5]. This allowed me to

create a highly dimensional vector space with a vector for every word in the

training and testing corpora. The direction that the vector pointed was based

on its relation to other words in the corpora. Once I had these vectors, I could

then compute vectors which represented the average direction of all the words

that filled a given role. The process by which this was done is covered in more

detail in §3.2.2.

1In the experiments described below, we use dependency analyses instead of constituent
structure.
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3.2.1 Data

Because it is best to have as much data as possible when building a

vector space model, I used the British National Corpus for this purpose.

3.2.2 Implementation

The selectional preferences model was implemented using a semantic

vector space. The following steps were taken in order to generate the semantic

vector space:

1. A list of all of the words in the FrameNet corpus which had been assigned

any semantic role was generated. Let U represent this list of words.

2. The Minipar parser2 - a syntactic parser which uses the concept of De-

pendency Grammar [14] - was used to create a parsed version of the

British National Corpus.

3. A semantic vector space was created using the DependencyVectors3 soft-

ware package [15]:

• The list of words in U and the dependency parsed version of the

British National Corpus were given to the software as input.

• The output of the software was a semantic vector space which in-

cluded vectors for all of the words in U . Let V represent this vector

space.

2http://www.cs.ualberta.ca/ lindek/minipar.htm
3http://www.nlpado.de/ sebastian/dv.html
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Once the vector space was generated, the FrameNet data was divided

into a training set, a development set, and a test set. This was done by

randomly assigning 1/5 of the FrameNet data to the development set, 1/5

to the test set, and the remaining 3/5 to the training set. The training set

was used to train the selectional preferences model and the development set

was used to test the effectiveness of the model during development. The test

set was put aside for testing the effectiveness of the model after it was fully

developed and trained. This method assures that the model doesn’t over fit

the test data used in the final analysis.

Algorithm 1 Generating the Selectional Preferences Vector Space
F ← {the list of all semantic frames in the training data}
V ← {a mapping of lemmas to vectors, as generated by DependencyVectors}
SP ← [] {SP will be a mapping of roles to vectors.}
for f in F do {f is the current semantic frame.}

R← {the list of all semantic roles in f}
for r in R do {r is the current semantic role.}

L← {the list of all lemmas in f which are assigned the role r in the training
data.}
spr ← 0 {spr is a vector is vector space V .}
for l in L do {l is the current lemma.}

vl ← V [l] {The vector for lemma l from vector space V .}
spr ← spr + vl

{spr represents the average semantic meaning of all the words which fill
the role r in the semantic frame f , given the training data. In other words,
it represents the selectional preference of the frame f towards the semantic
role r.}

end for
SP [r]← spr

end for
end for
return SP
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Algorithm 2 Training the Selectional Preferences Model
F ← {the list of all semantic frames in the training data}
V ← {a mapping of lemmas to vectors, as generated by DependencyVectors}
SP ← {a mapping of roles to vectors, as generated by Algorithm 1}
for f in F do {f is the current semantic frame.}

Df ← [] {Df will be a list of role / feature set pairs}
E ← {the set of all training examples in frame f}
for e in E do {e is the current training example}

p← {the predicate for training example e}
A← {the list of arguments for training example e}
for a in A do {a is the current argument}

la ← {the lemma for the argument a}
vl ← V [la ] {vl is the vector from V that represents the lemma la}
Cea ← [] {Cea will be a mapping of roles to angular cosines}
R← {the list of all semantic roles in f}
for r in R do {r is the current semantic role.}

spr ← SP [r] {spr is the selectional preference vector from SP for r}
cr ← {the cosine of the angle between the two vectors vl and spr}
Cea [r]← cr

end for
fsea ← {the feature set for the the example e and the argument a as
generated by the benchmark model}
{This feature set includes: }
{ The predicate for this example: p }
{ The lemma for this argument: la }
{ The part of speech of la (Noun, Verb, Adjective, etc.) }
{ The syntactic role of la in this example (Subject, Object, etc.) }
fssp ← fsea + Cea

r ← {the semantic role assigned to the argument a (the gold label)}
Df [ea]← (r, fssp)

end for
end for
The role / feature set pairs in Df are then used to train a classifier for f .

end for

24



3.3 Example

To demonstrate how the benchmark and selectional preference models

differ, I will use a short example training corpus:

(14) John eats apples.

(15) John eats grapes.

(16) John eats outside.

3.3.1 Benchmark Model

The training data given to the benchmark model has these annota-

tions4:

Label Predicate Lemma Part of Speech Syntactic Role
Ingestibles eats apples Noun Object
Ingestibles eats grapes Noun Object

Place eats outside Noun Object

Now let’s assume that during testing the following sentence with a constituent

that has a previously unseen headword is found:

(17) John eats someplace near campus.

This sentence would be assigned the following features by the benchmark

model:

4We’re working on the assumption that the syntactic parser labels “outside” as an object
due to the fact that it is a noun following a ditransitive verb. This ambiguity exists because
the verb “to eat” can also be intransitive, as is actually the case with (16).
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Predicate Lemma Part of Speech Syntactic Role
eats someplace Noun Object

The headword “someplace” wasn’t seen in the training data, so the

benchmark model assigns it the label that was most common given the other

features that were provided. This causes the benchmark model to incorrectly

label the constituent “someplace near campus” with the “Ingestibles” role.

3.3.2 Selectional Preferences Model

The same training data is given to the selectional preferences model

with these annotations5:

Label Pred. Lemma POS Syn. Role SPIngestibles SPPlace

Ingestibles eats apples Noun Object 0.95 0.10
Ingestibles eats grapes Noun Object 0.95 0.15

Place eats outside Noun Object 0.25 0.90

Now let’s assume that during testing the following sentence with a constituent

that has a previously unseen headword is found:

(18) John eats someplace near campus.

The sentence would be assigned the following features by the selectional pref-

erences model:

Predicate Lemma POS Syn. Role SPIngestibles SPPlace

eats someplace Noun Object 0.25 0.95

5SPX represents the cosine of the angle between this headword’s vector and the average
vector for all the headwords that fill role X. In this example the SPX values are arbitrary
and do not represent actual values for the given data.
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Since the cosine of the angle between the vector for “someplace” and

the selectional preference vector for the “Place” role is larger than the cosine

of the angle between the vector for “someplace” and the selectional preference

vector for the “Ingestibles” role, our model is able to correctly return the

“Place” label for this headword.
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Chapter 4

Results

This chapter discusses the results of my experiments. The experiments

were conducted in a controlled automatic role labeling setting to evaluate the

effectiveness of using selectional preferences with various classifiers.

In the sections below, the “benchmark” model refers to the model de-

scribed in §3.3.1. The benchmark model does not contain information on

selectional preferences. The “full” or “selectional preferences” model refers to

the model described in §3.3.2. The full model contains the same information

as the benchmark model plus information on selectional preferences.

4.1 Classifiers

In order to investigate whether or not selectional preferences improve

the ability of machine learning systems to properly assign semantic role labels,

I needed to eliminate the possibility that the choice of machine learning sys-

tem used in the experiment would affect the results. In order to do this I ran

the experiment through three separate machine learning systems. I then ex-

amined the results from each system. This way I can also investigate whether

or not certain machine learning systems are affected more by the addition of
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selectional preferences than other systems are. The three systems (or classi-

fiers) that I chose for the experiment were a decision tree classifier, a näıve

Bayes classifier, and a support vector machine classifier. Each classifier uses a

fundamentally different method of learning and applying the training data1.

4.2 Decision Tree Classifier

Figure 4.1 and Table 4.1 show the performance of the decision tree

classifier2 using the model that included selectional preferences compared to

the performance of the classifier using the model that did not include them.

For frames with between 100 and 1000 training examples, using the se-

lectional preferences model consistently increased the accuracy of the decision

tree classifier over the benchmark model. However, the frames with a small

number of training examples produced less accurate results with the selectional

preferences model than the benchmark model. This was especially noticeable

when looking at the frames with between 1 and 20 training examples, where

accuracy dropped more than 11%.

1A discussion of these methods is beyond the scope of this paper. See [19] for more
information on decision tree classifiers, [9] for more information on Bayesian classifiers, and
[11] for more information on support vector machines.

2The J48 classifier from the Weka project was used for this experiment.
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Figure 4.1: Accuracy of Decision Tree Classifier

# of Examples Benchmark Full Difference
1-20 38.095% 26.984% -11.111%

21-40 52.600% 51.798% -0.802%
41-60 56.622% 55.432% -1.19%
61-80 64.732% 64.008% -0.724%

81-100 55.873% 59.274% 3.401%
101-200 59.013% 60.268% 1.255%
201-300 62.992% 66.763% 3.771%
301-400 64.609% 66.026% 1.417%
401-500 72.196% 73.032% 0.836%

501-1000 66.505% 68.116% 1.611%
1000+ 70.403% 70.218% -0.185%

Average Difference: -0.143%

Table 4.1: Accuracy of Decision Tree Classifier
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Figure 4.2: Accuracy of Näıve Bayes Classifier

4.3 Näıve Bayes Classifier

Figure 4.2 and Table 4.2 show the performance of the model which in-

cluded selectional preferences compared to the performance of the benchmark

model for the näıve Bayes classifier3.

Whereas the decision tree classifier did poorly on frames with a small

number of training examples and well on those with a large number of train-

ing examples, the näıve Bayes classifier responded in exactly the opposite way.

Frames with a small number of training examples performed much better with

the selectional preferences model than the benchmark model, as shown by

the 11% increase in accuracy among frames with between 1 and 20 training

3The NaiveBayes classifier from the Weka project was used for this experiment.

32



# of Examples Benchmark Full Difference
1-20 58.730% 69.841% 11.111%

21-40 64.125% 62.843% -1.282%
41-60 61.525% 57.352% -4.173%
61-80 65.769% 65.857% 0.088%

81-100 57.201% 65.359% 8.158%
101-200 65.947% 58.777% -7.17%
201-300 70.869% 66.186% -4.683%
301-400 67.276% 57.948% -9.328%
401-500 72.957% 67.576% -5.381%

501-1000 68.928% 62.108% -6.82%
1000+ 70.131% 58.680% -11.451%

Average Difference: -2.578%

Table 4.2: Accuracy of Näıve Bayes Classifier

examples. However, large frames had reduced accuracy with the selectional

preferences model, especially those frames with more than 1000 training ex-

amples.

4.4 Support Vector Machine Classifier

Figure 4.3 and Table 4.3 show the performance of the model which in-

cluded selectional preferences compared to the performance of the benchmark

model for the support vector machine classifier4.

Out of all three classifiers that were used in this experiment, the support

vector machine classifier showed the smallest difference between the selectional

4The SMO classifier from the Weka project was used for this experiment.
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Figure 4.3: Accuracy of Support Vector Machine Classifier

# of Examples Benchmark Full Difference
1-20 68.254% 68.254% 0%

21-40 70.879% 71.202% 0.323%
41-60 63.772% 62.918% -0.854%
61-80 69.533% 69.497% -0.036%

81-100 65.419% 68.786% 3.367%
101-200 71.454% 70.028% -1.426%
201-300 77.566% 75.490% -2.076%
301-400 72.666% 72.397% -0.269%
401-500 76.628% 76.536% -0.092%

501-1000 74.090% 74.929% 0.839%
1000+ 73.912% 74.056% 0.144%

Average Difference: -0.007%

Table 4.3: Accuracy of Support Vector Machine Classifier
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preferences model and the benchmark model. Frames with very small and very

large numbers of training examples showed very little difference between the

two models. In fact, frames with between 1 and 20 training examples showed

no difference at all. However, frames with a medium number of training exam-

ples showed more of a difference between the two models. Those with between

81 and 100 training examples showed an improvement with the selectional pref-

erences model over the benchmark model, but those with 101 - 300 training

examples showed a decrease in accuracy.
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Chapter 5

Conclusion

The results of the experiment show that adding selectional preference

data to a model can improve the performance of semantic role labeling systems.

However, the degree of improvement is greatly dependent on the classifier used

and the size of the training corpus. The accuracy of the näıve Bayes classifier

was greatly improved by the selectional preferences model when only a hand-

ful of training examples were available. However, in almost all other cases the

selectional preferences model hindered the accuracy of the näıve Bayes clas-

sifier. On the other hand, the decision tree classifier showed an improvement

in accuracy when given the selectional preferences model and more than 80

training examples. This leads me to conclude that different classifiers should

be used for different amounts of training data. A larger semantic role labeling

system might work better if it used a näıve Bayes classifier with small datasets

and a decision tree classifier with large datasets1.

When the number of training examples was very large, the accuracy

1However, it should be noted that the support vector machine outperformed both näıve
Bayes and the decision tree classifier even without the selectional preferences model. If
feasible, the support vector machine classifier should be used instead of either näıve Bayes
or a decision tree classifier.
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of the selectional preferences model was very close to that of the benchmark

model for the decision tree and support vector machine classifiers. I believe

this is due to the fact that these classifiers, when given a large enough dataset,

are able to glean enough information from the other features provided to them

that the selectional preference data is redundant.

5.1 Future Work

It is clear that selectional preferences do not improve accuracy when a

frame has a large number of training examples. More work is needed to discover

whether these frames are deriving the information they need for semantic

role labeling from previously seen headwords or from previously seen sub-

categorization frames. This could be done by carefully selecting training data

so as to first limit previously seen headwords while maximizing previously seen

sub-categorization frames, then by limiting previously seen sub-categorization

frames while maximizing previously seen headwords.

Although I was able to determine overall trends by lumping together

frames based on the number of training examples available, I noticed that the

results for individual frames within those groups were much more erratic. The

accuracy of some frames improved drastically while the accuracy of others

decreased just as drastically despite the two frames having approximately the

same number of training examples. More work is needed to determine exactly

what other factors cause a given frame to perform better than another frame

of the same size when given a selectional preferences model.
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Appendix A: Results By Frame
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äı

ve
B

ay
es

D
ec

is
io

n
T

re
e

Su
pp

or
t

V
ec

to
r

M
ac

hi
ne

T
ra

in
in

g
A

cc
ur

ac
y

A
cc

ur
ac

y
A

cc
ur

ac
y

Fr
am

e
E

xa
m

pl
es

B
en

ch
m

ar
k

Fu
ll

B
en

ch
m

ar
k

Fu
ll

B
en

ch
m

ar
k

Fu
ll

G
ra

sp
24

2
54

.3
21

%
45

.6
79

%
54

.3
21

%
51

.8
52

%
66

.6
67

%
58

.0
25

%
H

ai
r

co
nfi

gu
ra

ti
on

55
63

.6
36

%
72

.7
27

%
68

.1
82

%
68

.1
82

%
68

.1
82

%
72

.7
27

%
H

in
de

ri
ng

18
8

60
.9

38
%

37
.5

00
%

57
.8

12
%

57
.8

12
%

65
.6

25
%

64
.0

62
%

H
ir

in
g

10
1

63
.6

36
%

57
.5

76
%

63
.6

36
%

66
.6

67
%

69
.6

97
%

69
.6

97
%

H
os

ti
le

en
co

un
te

r
28

4
53

.6
84

%
52

.6
32

%
36

.8
42

%
36

.8
42

%
60

.0
00

%
57

.8
95

%
Im

po
rt

an
ce

11
2

80
.4

88
%

65
.8

54
%

53
.6

59
%

53
.6

59
%

80
.4

88
%

82
.9

27
%

In
st

an
ce

14
66

.6
67

%
66

.6
67

%
66

.6
67

%
33

.3
33

%
66

.6
67

%
66

.6
67

%
In

ve
nt

io
n

45
2

62
.6

76
%

59
.1

55
%

63
.3

80
%

63
.3

80
%

69
.7

18
%

71
.1

27
%

Ju
dg

m
en

t
86

6
64

.0
93

%
50

.9
65

%
59

.4
59

%
59

.0
73

%
67

.5
68

%
69

.4
98

%
Ju

dg
m

en
t

di
re

ct
ad

dr
es

s
67

3
67

.8
57

%
64

.7
32

%
69

.6
43

%
69

.6
43

%
78

.1
25

%
77

.6
79

%
Ju

ry
de

lib
er

at
io

n
23

10
0.

00
0%

10
0.

00
0%

44
.4

44
%

44
.4

44
%

10
0.

00
0%

88
.8

89
%

K
ill

in
g

30
2

61
.7

02
%

56
.3

83
%

46
.8

09
%

46
.8

09
%

67
.0

21
%

69
.1

49
%

K
in

sh
ip

23
0

90
.5

41
%

93
.2

43
%

72
.9

73
%

94
.5

95
%

94
.5

95
%

94
.5

95
%

K
no

t
cr

ea
ti

on
8

66
.6

67
%

10
0.

00
0%

33
.3

33
%

33
.3

33
%

66
.6

67
%

66
.6

67
%

L
ea

de
rs

hi
p

29
5

77
.6

79
%

73
.2

14
%

66
.0

71
%

71
.4

29
%

84
.8

21
%

82
.1

43
%

L
ig

ht
m

ov
em

en
t

85
64

.1
03

%
71

.7
95

%
58

.9
74

%
53

.8
46

%
74

.3
59

%
74

.3
59

%
L

in
gu

is
ti

c
m

ea
ni

ng
21

42
.8

57
%

42
.8

57
%

14
.2

86
%

14
.2

86
%

71
.4

29
%

71
.4

29
%

L
oc

at
io

n
of

lig
ht

30
1

83
.1

58
%

81
.0

53
%

77
.8

95
%

77
.8

95
%

88
.4

21
%

86
.3

16
%

44



Bibliography

[1] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley

framenet project. In Proceedings of the 17th international conference

on Computational linguistics, pages 86–90, Morristown, NJ, USA, 1998.

Association for Computational Linguistics.

[2] Carsten Brockmann and Mirella Lapata. Evaluating and combining ap-

proaches to selectional preference acquisition. In Proceedings of EACL

2003., Budapest, 2003.
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[4] Xavier Carreras and Llúıs Màrquez, editors. Proceedings of CoNLL

shared task: Semantic role labeling., 2005.

[5] Katrin Erk. A simple, similarity-based model for selectional preferences.

In Proceedings of ACL 2007, 2007.

[6] Charles J. Fillmore. The case for case. In Universals in Linguistic

Theory, 1968.

[7] Charles J. Fillmore. Scenes-and-frames semantics. In Linguistic Struc-

tures Processing, pages 55–82. North Holland Publishing, 1977.

45



[8] Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles.

Computational Linguistics, 28(3):245–288, September 2002.

[9] George John and Pat Langley. Estimating continuous distributions in

bayesian classifiers. In Proceedings of the Eleventh Conference on Un-

certainty in Artificial Intelligence, pages 338–345. Morgan Kaufmann,

1995.

[10] Daniel Jurafsky and James H. Martin. Speech and Language Processing:

An Introduction to Natural Language Processing, Computational Linguis-

tics, and Speech Recognition. Prentice-Hall, 2nd edition, 2008.

[11] S.S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.

Improvements to platt’s smo algorithm for svm classifier design, 1999.

[12] Christopher Manning and Hinrich Schütze. Foundations of Statistical

Natural Language Processing. MIT Press, 1999.

[13] Rada Mihalcea and Phil Edmonds, editors. Proceedings of Senseval-3:

The Third International Workshop on the Evaluation of Systems for the

Semantic Analysis of Text, Barcelona, Spain, 2004.

[14] Joakim Nivre. Sorting out dependency parsing. In Proceedings of the

6th International Conference on Natural Language Processing (GoTAL),

pages 16–27, 2008.

[15] Sebastian Pado and Mirella Lapata. Dependency-based construction of

semantic space models. Computational Linguistics, 33(2):161–199, 2007.

46



[16] Martha Palmer, Paul Kingsbury, and Daniel Gildea. The proposition

bank: An annotated corpus of semantic roles. Computational Linguistics,

31(1):71–106, 2005.

[17] John C. Platt. Fast training of support vector machines using sequential

minimal optimization. pages 185–208, 1999.

[18] Sameer S. Pradhan, Wayne Ward, and James H. Martin. Towards robust

semantic role labeling. Computational Linguistics, 34(2):289–310, 2008.

[19] Ross J. Quinlan. C4.5: Programs for Machine Learning (Morgan Kauf-

mann Series in Machine Learning). Morgan Kaufmann, January 1993.

[20] Philip S. Resnik. Selectional constraints: An information-theoretic model

and its computational realization. Cognition, 61:127–159, 1996.

[21] Philip S. Resnik. Wordnet and class-based probabilities. In WordNet:

An Electronic Lexical Database, chapter 10, pages 239–263. MIT Press,

1998.

[22] Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Carroll, and Franz

Beil. Inducing an semantically annotated lexicon via em-based clustering.

In Proceedings of ACL 1999, Maryland, 1999.

47



Vita

Andrew Cleburne Young was born in San Antonio, Texas on Novem-

ber 26th , 1980, the son of Patrick Robert Young and Roberta Ann Houston

Young. In the 8th grade he applied to and was accepted by Business Ca-

reers High School – a competitive magnet school in San Antonio. During high

school he won regional and statewide awards for computer programming and

began working for a local Internet company. After high school he moved to

Austin, Texas and began his programming career at IBM. After six years at

IBM he moved on to several small companies before ending up at Rackspace,

where he works on their cloud computing initiative. While working at IBM in

2004, Andrew decided to go back to school to earn his Bachelors degree, and

was accepted into the computer science program at the University of Texas at

Austin. He changed his major to linguistics in 2006 after taking an introduc-

tory linguistics course as part of his core curriculum requirements. During his

senior year he applied to the linguistics graduate program at the University of

Texas at Austin and was accepted. He begins his graduate studies in 2009.

Permanent address: 6406 Avery Island Ave
Austin, Texas 78727

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

48


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1. Introduction
	Semantic Roles and Frame Semantics
	Automatic Semantic Role Labeling
	Headwords
	Selectional Preferences

	Chapter 2. Related Work
	Semantic Role Labeling
	Selectional Preferences
	Example
	Other Approaches

	Word Similarity and Vector Spaces

	Chapter 3. Method
	Semantic Role Labeling
	Data
	Parameters

	Selectional Preferences Model
	Data
	Implementation

	Example
	Benchmark Model
	Selectional Preferences Model


	Chapter 4. Results
	Classifiers
	Decision Tree Classifier
	Naïve Bayes Classifier
	Support Vector Machine Classifier

	Chapter 5. Conclusion
	Future Work

	Appendix A: Results By Frame
	Bibliography
	Vita

